
UCRL-JC-129950 
PREPRINT 

Solution of Capacitance Systems Using 
Incomplete Cholesky Fixed Point Iteration 

D. A, White 

This paper was prepared for submittal to 
International Journal for Numerical Methods in Engineering 

March 13,199s 

\ 

Thisisapreprintofapaperintendedforpublicationina joumalorproceedings. Since 
changes may be made before publication, this preprint is made available with the 
understanding that it will not be cited or reproduced without the permission of the 



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government.  Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



Solution of Capacitance Systems using 
Incomplete Cholesky Fixed Point Iteration 

Daniel A. White 
Center for Applied Scientific Computing 

Lawrence Liverrnore National Laboratory 

March 13, 1998 

Abstract 

Application of the Galerkin finite element method to the electromag- 
netic vector wave eqnation yields an implicit system of equations that must 
be evolved in time The left hm(i matrix has units of capacitance and is 
analogous to the mass matrix in corltin~~rlni mechanics In this letter we 
point out the interesting fact that for a Cartesian grid the Cholesky de- 
composition of the capacitance matrix has the same sparsity as the original 
matrix, i e there is no zero-fill during the course of the Cholesky decom- 
position Therefore ax1 iterative metllod using the incomplete Cholesky 
decomposition as a precontlitioner is quite efficient for nearly orthogonal 
quadrilateral or hexahedral grids 

1 Introduction 
The classic nodal finite element metliod has been shown to be an accu- 
rate and robust method for solving electrostatic problems However the 
use of nodal finite elements for fully electromagnetic problems has been 
problematic for several reasons First, the standard Lagrange nodal finite 
element does not allow jump discorltirnlities of fields across material in- 
terfaces Secor~d, the use of 11orla1 finite elements can lead to spurious, 
non-physical solutions For these reasons, vector finite element methods 
which employ the recently developed class of elements known as edge, 
Nedelec, or H(cu1.1) elements [l, 21 have become quite popular This 
paper is concerned with tile solution of systems of equations that arise 
when using the linear vector finite element method for the electromag- 
netic vector wave equation The simple Incomplete Cholesky Fixed Point 
(ICFP) iteration is investigated as an iterative method. It is shown that 
this method is quite efficient for general grids, and in fact this method 
converges to the exact solution in a single iteration for Cartesian grids if 
the degrees-of-freedom are ortlred prollerly 



2 Galerkin Formulation 
We are concerned with tlhe computer simulation of time dependent elec- 
tromagnetic fields in a generic volume a. There is no free charge in the 
volume An appropriate PDE is the vector wave equation for the electric 
field l? 

a2 - 
catzE=-Vxp -‘Vx,JZ--$Yin R (1) 

For simplicity it is assumed that the dielectric permittivity 6 and the 
magnetic permeal)ility 11, are constant scalars. The electric field OII the 
boundary l- is sI)ecilied by 

fi x i? = J!& 011 r, (2) 
and the two initial conditions 

E(t = 0) = Eic in R, (3) 

(4) 

complete the description of tlLe PDE Typically the initial conditions are 
zero and the problem is tlriverl by either the time dependent current source 
J’or the time deI)endent I)onntlary condition & 

The variational form of (1) is: find l? E H(curl) tliat satisfies 

&( &,E*) = (p-10 x E,v x 3) - 4 (Jq (5) 

for all Z* E Ho(cv.7I), where 

and 
H”(cwl) = (77 : 77 E H(cud), 7i x v’ = 0) (7) 

In the finite element solution of (5) the space H(cwl) is approximated by 
a finite dimension sul~~pace IVh c H(c~rrl) defined on a mesh, yielding a 
system of ODE’s 

a’ 
Aatz”=C”+“. (8) 

The variable ~5 is the array of degrees-of-freedom and the variable S is the 
array of source terms, wliich incli~tles coritributinr~s from both the inde- 
pendent current source .I’and tile boundary condition & Tile matrix A 
is a symmetric positive definite matrix, with units of capacitance, which 
resembles the mass matrix of continuum mechanics The matrices .4 and 
C are given by 

Aij = (~G’i,Mf;.), (9) 
Cij = (/L-IV X LCi,V X Gj) , (10) 

where N’i is tile basis functinu associated with edge i The vector basis 
filnctions G’i are well known and will not be derived here The properties 
of K’i relevant to this letter are: 1) (\Gi, l$‘j) = 0 if edges i and j do not 

share an element, ant] 2) (@i, r’i;j) ’ ’ 0; cos0, where 0 is the angle between 
edges i and j 
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3 Incomplete Cholesky Fixed Point Iter- 
ation 
horn now on we are concerned with the solution of the system Ax = 11 
Let the capacitance matrix be dcco~~iposed as 

A=M-N (11) 

The matrix A4 is the I)recor~tlitiorler. The fixed point iteration is then 

j,,fxk+’ = Nx” f b. (12) 

This iteration is known to converge if and only if 

p (Al-IN) < 1, (13) 

where p(A) denotes the spectral radius of A Since A is symmetric positive 
definite it has a Cholesky decomposit,ion A = LLT where L is a lower 
triangular matrix Tlke IncolnI)lete Clmlesky Fixed Point (ICFP) iteration 
is defined by using 

Al = iLT, (14) 
where 2iT is the incomplete Cholesky decomposition of A The Cholesky 
decomposition defined in [3] is s11owr1 in Fig 1 for convicnence The in- 
complete Cllolesky dccomposith is a modification of the above algorithm 
such that line 8 is executed only if A (i,j) = 0. Therefore the incomplete 
Cholesky decompositiou has the same sparsity pattern its the original 
matrix. If the matrix A has at most m non-zero entries per row, then 
the ICFP iteration requires apprnximatly m N, floating point operations, 
where N, is the nnmi)er of internal edges iu the grid The number of ICFP 
iterations required depentls upon how effective the incomplete Cholcsky 
decomposition is zs a I)r’:(:Orl’litic~rler 

For a 2D or 3D Cartesian grid tllore is no zero-fill during the course of 
the Cllolesky decoml~ositior~, 11e11ce tile ICFP gives the exact solution in a 
single iteration. Consider line 8 of Fig 1 Asswrle that A (i, j) = 0, wllich 
means that there is no iIlterar:tion I)etwcen edges i and j. Tllere will be 

1 for k = l:n 
2 A(k,k) = sqrt(A(k,k)) 
3 for i = k+l:n 
4 A(i,k) = A(i,k)/A(k,k) 
5 end 
6 for j = k+l:n 
7 for i = j:n 

8 A(i,j) = A(i,j) - A(i,k)*A(j,k) 
9 end 
10 end 
11 end 

Figure 1: Cholesky dec:ollll)osition algo~itlm for 71. by n matrix A 
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zero fill only if there is another edge k, witlr k < j < i, tliat interacts with 
both edge i and edge j Nnnll)ering the edges secpeutially precludes this 
possibility This nurul)eriIlg sclit:Ine is illustrated in Fig 2 

For a distorted quadrilateral or l~exal~edral grid, there is zero-fill during 
the course of the Cholesky decomposition, hence the ICFP is not exact. 
Again consider line 8 of Fig. 1, and assume that A (i, j) = 0. For a 
distorted grid there will be some edge k, with k < j 5 i, that interacts 
with both edge i and edge j This is illustrated in Fig 3 However, since 
A (i, k) t A (j, k) 0: (coscy)‘, the terms tllat are ignored are quite small for 
grids that are not to0 distorted 111 [4] it was shown that for the case of a 
triangular grid, a grid c01up0se~l of cclualateral triangles was ideal in the 
sense that A had minimum condition number The result here is similar, 
except that the condition numl)er of h-IA is actually unity f0r the ideal 
grid 

As an example, consider the p-id sl~~wn in Fig. 4. This grid has 1000 
nodes and 729 distorted hexal~edral cells The capacitance matrix has 
dimension 1728, the murher of internal edges Using an initial iterate 
of x0 = 0, the ICFP method required only 5 iterations to achieve a Lz 
residual of lo-” As anotller examl)le, consitler the sl)llerical grit1 shown 
in Fig 5 This grid has 2273 tootles and 2048 l~exal~etlral cells The 
capacitance matrix has tlinlension 5792 F0r tllis grid tile ICFP method 
required 7 iterations to acllieve a Lj residual of lo-” Tllis grid reqllired 
more iterations not I)ecause it was larger, InIt because the minirnnm angle 
between adjacent edges wa.5 smaller This same number of iterations was 
required fnr grids with over 180,OOO edges 
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4 Summary 
The Incomplete Cholcsky Fixed Point iteration is suggested z a method 
for solving capacitance systems tllxt arise iu tlie vector firlite element solu- 
tion of electromagnetic vector wave cqnatio:~ Tllis metllod has tile prop- 
erly that it converges to tlic: exact solrltioil in a sirlgle iteration for Carte- 
sian grids. For hexnhetlrxl gricls that arc: not too distorted the method 
requires between 5 and 10 iter;ltims to achieve an LZ residual if lo-“, 
regardless of problem size 
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